Revising the distributive networks models of West, Brown and Enquist (1997) and Banavar, Maritan and Rinaldo (1999): metabolic inequity of living tissues provides clues for the observed allometric scaling rules.

نویسندگان

  • Anastassia M Makarieva
  • Victor G Gorshkov
  • Bai-Lian Li
چکیده

Basic assumptions of two distributive network models designed to explain the 3/4 power scaling between metabolic rate and body mass are re-analysed. It is shown that these models could have consistently accounted for the observed scaling patterns if and only if body mass M had scaled as L4, where L is body length, in the model of Banavar et al. (1999, Nature 399, 130-132), or if spatial volume VF occupied by the distributive network had scaled as M3/4 in the model of West et al. (1997, Science 276, 122-126). Lack of agreement between these predictions and observational evidence invalidates both models rendering them mathematically controversial. It is further shown that consideration of distributive networks can nevertheless yield realistic values of scaling exponents under the major assumption that living organisms are designed so as to keep the mass-specific metabolic rate of important functional tissues in the vicinity of a size-independent optimum value. Mass-specific metabolic rate of subsidiary mechanical tissues can be small and vary with body mass. Different patterns of spatial distribution of metabolically active biomass within the organism result in different patterns of allometric scaling. From the available evidence the presumable optimum value of mass-specific metabolic rate of living matter is estimated to be in the vicinity of 1-10 W kg-1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response to Forum Commentary on ‘‘toward a Metabolic Theory of Ecology’’

MacArthur, R. H. 1968. The theory of the niche. Pages 159– 176 in R. C. Lewontin, editor. Population biology and evolution. Syracuse University Press, Syracuse, New York, USA. West, G. B., J. H. Brown, and B. J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122–126. West, G. B., J. H. Brown, and B. J. Enquist. 1999. The fourth dimension of life...

متن کامل

A general model for the origin of allometric scaling laws in biology.

Allometric scaling relations, including the 3/4 power law for metabolic rates, are characteristic of all organisms and are here derived from a general model that describes how essential materials are transported through space-filling fractal networks of branching tubes. The model assumes that the energy dissipated is minimized and that the terminal tubes do not vary with body size. It provides ...

متن کامل

Scaling and universality in ontogenetic growth

Recently, West et al. claimed to derive a general quantitative model based on fundamental principles for the allocation of metabolic energy between maintenance of existing tissue and the production of new biomass, and in addition claimed to derive a single, parameterless universal curve that describes the growth of many species. They further claimed that their model of the 3/4 exponent for the ...

متن کامل

The fourth dimension of life: fractal geometry and allometric scaling of organisms.

Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by ...

متن کامل

Demystifying the West, Brown & Enquist model of the allometry of metabolism

1. The allometry of metabolic rate has long been one of the key relationships in ecology. While its existence is generally agreed on, the exact value of the scaling exponent, and the key mechanisms that determine its value, are still hotly debated. 2. The network model of West, Brown & Enquist ( Science 276 , 122–126, 1997) predicts a value of 3 / 4 but, although appealing, this model has not b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 237 3  شماره 

صفحات  -

تاریخ انتشار 2005